I am not sure this will work, but many of the STM32’s have an external memory interface that is capable of a very decent clock speed. An F7 clocks the memory bus at 108Mhz, a F42x at 90Mhz and F405 at 60Mhz etc. The data-bus vary from 16 to 32 pins, but you need the LPQF176 for 32 pin data-bus.
The issue is that if I use the data-bus as Logic Analyser pins I should be able to sample at this speeds in bursts to create a high frequency Logic Analyser. I am not so fuzzed about the high frequencies because I mainly want a x channel Analyser that can display up to 10Mhz. It is very seldom that I come across higher frequencies and I don’t want the added complexity.
A 100Mhz, 32 channel Logic Analyser sounds great, but the added complexity of routing a LPQF176 with 100Mhz signals in mind is not worth it. A F405 with up to 60Mhz is more than I want, but it should not have any challenge with my 10Mhz on 16 channels.
The upside is that I also can use the same ports as output and have a 16 channel Logic Generator. That is assuming I can use the external memory interface the way I now plan. If it works we will be able to support 1-6 samples per Hz depending on how fast I run the clock.
The downside with 60Mhz or faster is that you start getting additional challenges on routing as the frequencies increase. As a hobbyist I prefer to stay well below 50Mhz due to this and this is one of the few applications where I could benefit from higher frequencies.